
cessful
impact
prevent
tor.

l into a
and in

ements

s the
ks arrive
tor may
of soil
een 15

mous
a mo-

he re-
l axes.

-
r-based
puter.

rocessor
during

several
zimuth of

When
swing

d from
cavator’s
sag or
swing
Obstacle detection and safeguarding for a high-speed
autonomous hydraulic excavator

Chris Legera, Patrick Rowe, John Bares,

Scott Boehmke, and Anthony Stentz

The Robotics Institute, Carnegie Mellon University

 ABSTRACT

Hydraulic excavators are large, powerful machines which are often operated in high-production settings. Suc
automation of excavators for mass excavation tasks require safeguarding algorithms which do not negatively
productivity. We present a two-level sensor-based safeguarding approach which utilizes obstacle detection to
collisions and motion detection to halt operation when unanticipated vehicles or people approach the excava

Keywords: Obstacle detection, excavation, safeguarding, motion detection.

1. INTRODUCTION

In a typical mass excavation application, a loading machine digs material from a face and dumps the materia
truck, with a throughput of hundreds of trucks per day. The process is repetitive and continues day and night
most weather conditions. The repetitive nature and potential cost benefit of even minor performance improv
make the automation of mass excavation attractive.

Mass excavation using hydraulic excavators is typically accomplished by eroding a strip of soil (known a
“bench”) underneath the excavator. The excavator backs up as it erodes the face of the bench, and dump truc
for loading next to the excavator. Depending on the relative sizes of the excavator and dump trucks, the excava
load between 2 and 10 buckets of soil to fill each truck. During each loading cycle, the excavator digs a bucket
from the bench, swings over the truck, dumps the soil, and swings back to the dig face; each cycle takes betw
and 30 seconds, varying with dig and dump locations and soil conditions.

The robot used in this work is a commercial hydraulic excavator that has been modified for autono
operation1 (Figure 1). The excavator can be considered to be a four degree of freedom manipulator mounted on
bile base. The first degree of freedom is the swing joint, which rotates the entire cab about a vertical axis. T
maining degrees of freedom are the boom, stick, and bucket, respectively, all of which have parallel horizonta
(The boom, stick, and bucket links are collectively known as theimplements.) All actuators on the machine are hy
draulic. The excavator’s conventional valve-based manual controls have been replaced by a microprocesso
controller which may accept commands from a set of instrumented joysticks or from a separate onboard com
The onboard computer executes all perception and control software and consists of several MIPS-based p
boards on a common backplane. Two scanning rangefinders provide perceptual information to the computer
autonomous operation. Each rangefinder’s beam is directed by two actuators: the tilt motor spins a mirror at
tens of cycles per second, thus sweeping the beam through a vertical plane, and the pan motor changes the a
the sensor head, tilt motor, and mirror (Figure 2).

One of the key challenges in automating mass excavation is ensuring safety for workers and equipment.
swinging between the dig and dump locations, the excavator’s bucket velocity may approach 10 m/s and the
axis may require 60 or more degrees to stop during an emergency. Additionally, rocks and soil may be dislodge
the bucket, posing a potential hazard to nearby equipment and personnel. It is also necessary to prevent the ex
implements from swinging over workers or equipment: a ruptured hydraulic line may cause the implements to
drop uncontrollably. (The dump truck bed is the only exception to this rule, since the excavator must obviously

a. The first author may be contacted via email at blah@cmu.edu, and is located on the WWW at http://www.frc.ri.cmu.edu/~blah/.

l of high
un-

cle detec-
a two-

ator to
o detect
vehicle

at our
ctivity
rimarily
lator

s focused

.

h cause
load
otion

o inform

dump
ctor then
otion of
ion time
op com-
nent of
the bucket over the truck bed in order to load the truck).

In a mass excavation setting, obstacles and unanticipated vehicles or workers are rare. Taken with the goa
productivity, this implies that the motion planner should be concerned with optimizing productivity while treating
anticipated obstacles, vehicles, and personnel as exceptional conditions. Thus, a reactive approach to obsta
tion and safeguarding is more appropriate than deliberative planning to avoid obstacles. We have developed
tiered reactive safety system. The first tier utilizes perceptual data and a fast dynamic simulation of the excav
predict future machine states and detect collisions with the environment. The second tier uses range data t
unanticipated moving objects around the excavator, allowing the excavator to halt motion before a person or
gets close enough to travel under the excavator’s implements or become endangered by falling rocks or soil.

The problems addressed in this work differ from previous work in obstacle detection for manipulators in th
manipulator (the excavator) requires significant time and distance to come to a halt. Additionally, since produ
is a primary concern and unanticipated obstacles are infrequent, our planning algorithms must be concerned p
with optimizing throughput rather than finding paths which give obstacles a wide berth. Prior work in manipu
obstacle avoidance has focused on planning paths around obstacles2, 3 in known environments, rather than halting
when an occasional obstacle is sensed. Work has been done in the area of safeguarding for excavators, but ha
on low-speed operation in which the stopping time and distance are negligible.4, 5 We find that the needs of our system
are closer to those found in obstacle detection for high-speed mobile robots6 than to manipulator obstacle avoidance

2. OBSTACLE DETECTION

The obstacle detection algorithm is tasked with ensuring that the excavator does not execute any motions whic
a collision with objects in the environment. Since the motion planner must know where the truck is in order to
it, the planner will not command a trajectory that causes the excavator to collide with the truck. However, the m
planner does not have knowledge of other obstacles in the environment and relies upon the obstacle detector t
it of any potential collisions. Briefly, the obstacle detector algorithm works as follows:

After the motion planner has generated a set of commands (typically swinging from the dig location to the
location or vice versa), it scans the range sensors through the region of anticipated motion. The obstacle dete
builds an elevation map from the range data. Every tenth of a second, the obstacle detector simulates the m
the excavator over the next few seconds (starting with the most recent sensed vehicle state). At each simulat
step, the predicted pose of the machine is checked against the elevation map for collisions. An emergency st
mand is immediately issued if any collision is predicted. The remainder of this section describes each compo
the obstacle detector in detail.

Pan axis

Vehicle cab

Rotating
reflector

DistanceScan axis

Obstacle or terrain

Scan plane

sensor
measuring

Figure 1: The excavator testbed. Figure 2: Range sensor configuration

ead and
reate a
ch grid
serva-
l, and

umber

during
cavator
farther

e if the
n pro-
, then

he line
is deter-

egins a
le com-
for a set

e state.
etected

es with

r veloc-
The

elocity
e time
me step

-
of

an
2.1 Constructing elevation maps

Depending on which way the excavator will swing, the motion planner commands one of the sensors to pan ah
gather data in the region through which the implements will move. The resulting range data is processed to c
grid-based elevation map. The map is centered on the excavator and is built before each swing motion. Ea
cell contains the height of the highest data point that falls within the cell; thus, the elevation map provides a con
tive estimate of the height of the terrain at any point nearby the excavator. The grid resolution is not very critica
is limited by two factors: the number of intersection checks required for collision detection increases with the n
of grid cells, and the accuracy of the elevation map representation decreases as cell size increases.

It is necessary to ensure that the implements do not travel through a region of space which was occluded
scanning, since there may be objects in the occluded regions. For example, if there is a tall object close to the ex
and a shorter one beyond it, the boom may be able to clear the close object while the bucket may not clear the
one. To prevent collisions with occluded obstacles, we interpolate between adjacent points within a scanlin
points’ corresponding grid cells differ by more than one in either coordinate. The interpolated points are the
cessed just as the original points were: if a point’s height is greater than the height of the grid cell in which it lies
the cell’s height is set to the point’s height. Figure 3 shows how points are interpolated. The intersections of t
between the sensed points and each grid cell boundary are computed, and the height at these intersections
mined. The interpolated height is then used to update the height of the grid cells neighboring the point.

2.2 State prediction

During each planner cycle, the obstacle detector reads the excavator’s joint positions and velocities and b
simulation to predict the path of the implements in the next few seconds. The motion planner generates vehic
mands from vehicle states; thus, during each simulation step, the obstacle detector queries the motion planner
of commands based on the simulated vehicle state. A simplified dynamic model then predicts the next vehicl
The obstacle detector must predict the vehicle state far enough in the future so that potential collisions can be d
far enough in advance to allow the machine to come to a halt. Since the stopping time of the excavator vari
velocity, the necessary feedforward time varies as well.

The simulation step size should be chosen so that when simulating swing motions at the maximum angula
ity, the excavator’s bucket will move no more than the width of one grid cell between simulation time steps.
maximum distance between the bucket and the swing axis is roughly 10m. During loading operations, swing v
may reach 50 deg/s; this yields a linear velocity of 8.7 m/s at the bucket tip. Using our grid cell size of 0.6m, th
step must be no more than 68ms. This is quite reasonable from a computation standpoint, as simulation ti

envelope
beneath the
implements

Figure 4: For collision checking, the excavator’s imple
ments are modeled by a set of points on the underside
each link. The height of each point is checked against
elevation map acquired by the range sensor.

Actual data points
Interpolated data points

Top view

Side view

Figure 3: When neighboring points in a scanline do not
fall in adjacent cells in the terrain map, interpolation is
performed. Interpolated points are computed at the in-
tersections of the line between real data points with the
boundaries between grid cells.

terrain

s cycle

ased on
ements
t lies
height
issued.
int an-
of the
stick

ppropri-

will be
scanner
ction la-
e max-
h is the
range of
and, it

ad angle
te.

braking
le plus
rmine
xecuted
ch point

e maxi-
kahead
d looka-

is the
dequate

e range
allows
s kine-
om sim-

nt pos-
requires less than a tenth of a millisecond; the total computation time required for simulation during each 100m
is less than 2ms.

2.3 Detecting intersections

At each simulation time step, a simple geometric representation of the excavator’s implements is computed b
the predicted joint angles. This geometric model consists of a series of points along the underside of the impl
(Figure 4). Each point is checked for collision with any obstacles by computing the grid cell in which the poin
and then comparing the point’s height to the height stored in the cell. If the point’s height is less than the cell’s
plus a safety buffer, the motion planner is informed of a potential collision and an emergency stop command is
The location of the points on each link of the implements depends on the swing direction and the implement jo
gles. If the excavator is swinging to the left, an offset is added to the points so that they lie on the left edge
bottom side of the implements; a similar adjustment is made if the excavator is swinging right. Additionally, the
and bucket may have different surfaces towards the ground depending on the implement joint angles, so the a
ate surface must be used when computing the points.

2.4 Scanner lookahead

Predicting collisions requires that the elevation map contains data for the region through which the excavator
moving. To ensure this, the scanner must begin panning far enough in advance so that at each time step, the
has panned farther than the lookahead angle (which is determined by the stopping distance and obstacle dete
tency). There are two scanner pan angles involved in computing lookahead: the lookahead angle, which is th
imum angle that the scanner needs to be panned to during a given swing motion; and the trigger angle, whic
pan angle the scanner must reach before the swing motion begins. These angles are computed off-line for a
swing step commands and are stored in a lookup table. After the motion planner determines the swing comm
determines the lookahead and trigger angles from the lookup table. The scanner begins panning to the lookahe
during the dig (or dump) operation so that the trigger angle is reached before digging (or dumping) is comple

The lookup table is built from measured machine responses to varying swing step commands. First, the
time and angle is measured for a range of swing velocities. The lookahead angle is given by the braking ang
the computing latency multiplied by the swing velocity. (The braking time measured in this step is used to dete
the number of simulation time steps, as described in Section 2.2.) Next, a range swing step commands are e
and the velocity profiles are recorded (Figure 5a). For each step command, the required lookahead angle at ea
along the swing velocity profile is then computed. The scanner pan command for a given step command is th
mum lookahead angle over the velocity profile. Finally, the scanner’s response curve to the commanded loo
angle is computed, and then shifted leftward until the scanner pan angle is greater than or equal to the require
head angle at each point along the velocity profile (Figure 5b). The y-intercept of the shifted response curve
trigger value, the value which the scanner’s pan axis must reach before the swing motion can begin to ensure a
lookahead.

2.5 Validation

Before testing the obstacle detection algorithm on the excavator, we performed testing in simulation over a wid
of scenarios. Our simulator provides the control software with an interface identical to the real excavator’s and
the excavator’s complete software system to be tested in simulation. In addition to simulating the excavator’
matic and dynamics, the simulator models soil removal, interaction, and settling and can generate range data fr
ulated scanners with the same specifications as the real scanners.

We tested the obstacle detection algorithm with varying obstacle sizes and positions, and varying impleme
es. These tests ensured robustness in three areas:

• Geometry - are the geometric models of the excavator and terrain correct?
• Prediction - does the algorithm predict vehicle states far enough into the future to stop before

collisions? Are vehicle states predicted correctly?
• Perception - can obstacles be reliably sensed?

Time (sec)

Time (sec)

S
w

in
g

V
el

oc
ity

 (
de

g/
s)

Lo
ok

ah
ea

d
an

gl
e

an
d

S
ca

nn
er

 p
an

 a
ng

le
 (

de
g)

A

B

Figure 5: The swing velocity as a function of time is shown for a series of step commands to the swing joint inA
above. The step commands ranged from 10 to 160 degrees.B shows the required lookahead angle (lower curve) and
final pan response curve (upper curve) computed for a swing step command of 100 degrees. (These curves are com-
puted for each of the velocity profiles inA, but only one set is shown for clarity.)

ime re-
ght and
depen-
s; varying
hich the

nega-
reach-

ctors
ion. Most
It is desirable to distribute tests throughout the space of operating conditions. However, given the simulation t
quired for each test (one to two minutes) and the large dimensionality of the operating conditions (obstacle hei
width, obstacle position in the plane, and three implement joints angles), we decided to partition the tests to in
dently verify robustness in the three areas above. Varying obstacle range and size tests perceptual robustnes
the implement angles and obstacle position verifies geometric robustness; and varying the swing angle at w
obstacle is located tests prediction. With the final version of the software there were no false positives or false
tives and no collisions. All potential collisions were detected soon enough to allow the excavator to stop before
ing the obstacle, and the excavator did not stop when a collision would not have occurred.

While the simulated tests verified the integrity of the algorithm, the simulation did not account for several fa
present on the real excavator: noise in sensor data, command and data latencies, processing time, and calibrat

etection.
y, these
e from

cket lo-
s halted
ing, the
orithm

he time-
rform-

ck and
tential
several
ensure
ince we
ion be-

nary or
alt the
ction al-
an el-

asks. A
n map.

obstacle
ions.

n algo-
shows
MPTY.
ed points
t is dis-
s is set

Inter-
reas of
he cell
olated
a list
n to the

dified
hanges
com-

ts. In-
of the noise in our range data is additive and on the order of several centimeters; this does not impact obstacle d
More problematic is the occasional spurious data point, which can potentially cause false positives. Fortunatel
points are rare enough that they can be filtered out by discarding any data points with a large difference in rang
its neighbors. At the time of testing, the implement and range sensor calibrations yielded discrepancies in bu
cation of 20-30 cm. To account for this, we added a safety margin of 50cm above obstacles--the excavator wa
if any part of the implements was predicted to pass less than 50cm above an object. (Since the time of test
calibration has been improved to yield errors around 10cm.) We found that the computation required for the alg
was fairly low, occupying only a small part of one CPU’s processing time.

Tests on the real machine were performed with a cardboard, human-sized target as an obstacle. Due to t
consuming nature of test site preparation when moving soil, we did not test obstacle detection while actually pe
ing truck loading. Instead, we used a simplified motion planner which commanded the machine to swing ba
forth between pre-selected dig and dump locations. The final version of the software was able to detect all po
obstacles and halt the excavator before a collision occurred. Due to the safety margin, the excavator stopped
times when it would have narrowly missed the obstacle. This is desirable from a safety standpoint, but we must
that the excavator is not halted unnecessarily when swinging the bucket over the truck bed before dumping. S
now have a more accurate calibration, we anticipate reducing the safety margin to allow for better discriminat
tween potential collisions and near misses.

3. SAFEGUARDING

The obstacle detection algorithm presented in the previous section is sufficient to prevent collisions with statio
slow-moving objects in the path of the excavator. However, as discussed in the introduction, it is desirable to h
excavator’s motion when a person or vehicle unexpectedly approaches the excavator. Like the obstacle dete
gorithm, our safeguarding approach (called the Workspace Monitor or WSM) represents the environment with
evation map. The WSM continually gathers range data, using the same data stream as other perception t
temporary elevation map holds recent range data and is periodically compared with an accumulated elevatio
An increases in cell elevation can indicate the presence of a moving object; a decrease may indicate that the
has changed position. This is the basis of the WSM algorithm; the details are described in the following sect

3.1 Building elevation maps

The WSM builds and represents elevation maps in a slightly different manner than the obstacle detectio
rithm. In addition to storing a height for each cell, a status flag indicates special properties of the cell. Table 1
the status flag values and their meanings. The temporary map is initialized so that each cell’s status flag is E
As each scanline is received, the data points are checked against the temporary elevation map and interpolat
are computed if necessary. Each cell stores the heights of the highest two points to fall in the cell; the highes
carded to minimize the impact of false sensor readings. Whenever a data point lies within a cell, the cell’s statu
to SET (if the point was sensed) or INTERPOLATED (if the point was interpolated, and the cell was empty).
polation in the WSM serves a different than in obstacle detection: it allows moving objects to be detected in a
the elevation map which were previously occluded. Interpolated points are used to set a cell’s height only if t
was previously marked as EMPTY, and a real data point will always override a cell height that is based on interp
data.b Each time a temporary map cell changes status from EMPTY to SET or INTERPOLATED, it is added to
of modified cells. This allows fast access to those cells that have been modified so that they can be merged i
accumulated map.

3.2 Updating the accumulated elevation map

The accumulated elevation map is incrementally built from the modified cells of the temporary map. Each mo
cell in the temporary map is compared with the corresponding cell in the accumulated map to detect elevation c
and to update the accumulated map height. While it would be possible to fill the entire temporary map before
paring it as a whole to the accumulated map, this would cause a significant latency in detecting moving objec

b. This prevents occlusions from generating an interpolated cell height which is higher than a previous actual cell height, which could
be mistaken for a height increase caused by a moving object.

ent data.
d while

u-

ITED
d into
before
d.

the
e sam-
, neigh-
a large
e is
in cells
from the
ase by

ystem,
r’s max-

height
s with
ld not be
ally take
normal

r this is
at a rel-
stead, we frequently compare the accumulated map with the small portions of the temporary map that have rec
This allows the latency to be significantly reduced: in our implementation, map updates occur every half-secon
the period of the range sensor scanning motion is on the order of 15 seconds

The WSM updates the accumulated map using two procedures.CheckCell determines whether a cell in the
temporary map should be considered a moving object, andMergeCell updates the height and status of an accum
lated map cell based on the results ofCheckCell. During each map update,CheckCell is called for those tem-
porary map cells marked as NOT_VISITED. After all cells have been checked,MergeCell is called for all
temporary map cells except those that are marked as SET or INTERPOLATED, which are changed to NOT_VIS
or I_NOT_VISITED respectively. This prevents cells that are in the middle of being scanned from being merge
the accumulated map, which is desirable since their height in uncertain. If no new range data falls within a cell
the next update, the cell will still be marked as NOT_VISITED or I_NOT_VISITED, and will thus be processe

Pseudocode forCheckCell is shown in Figure 6. Due to sensing errors, it is not sufficient to simply check
change in height of a single map cell. For example, if the edge of an object lies close to a grid cell boundary, th
pled edge of the object may lie in either cell due to noise in range measurements. To avoid this sort of problem
boring SET cells in the accumulated map are checked to determine if there is a large height discontinuity. If
discontinuity exists or if the temporary cell’s height is close to a neighboring cell’s height, then the height chang
assumed to be caused by sampling errors. A similar problem may occur if there is a large height discontinuity
at the edge of the scanned area. In one scan, a cell at the border of the scanned area may only contain data
low part of the cell, but in the next scan the higher part may be detected. We avoid false detections in this c
ignoring height changes if there are 2 or more empty neighboring cellsc. Whenever an OBSTACLE cell is detected
within the specified safety region around the machine, the motion planner is notified and halts motion. In our s
the safety region extends approximately 15 meters from the center of the excavator (5m beyond the excavato
imum reach)

We tried two versions of MergeCell in our system. The first version, shown in Figure 7, always updated the
of cells in the accumulated map with height information from the temporary map. This version had problem
sampling errors at the long ranges (15-20m). Due to the sparseness of the range data, narrow objects cou
sensed reliably and would thus cause apparent elevation changes. One solution to this problem is to periodic
a slow, dense scan of the environment to build a reliable elevation map, and then use data collected during
operation only for comparison, rather than updating the accumulated map. The version of MergeCell used fo
given in Figure 8. The accumulated map can be cleared and rebuilt during breaks in loading operations, so th
atively recent accumulated map is available at all times.

c. This occurs only at the edge of the scanned region, which lies outside the operating area of the machine.

Table 1: status flags

Flag Meaning

EMPTY No range data lies within the cell.

SET One or more data points lie within the cell

INTERPOLATED Only interpolated data points are in the cell

NOT_VISITED No further data has been received since the last map update

I_NOT_VISITED Same as NOT_VISITED, but for cells with interpolated data

CHANGED An accumulated map cell’s height has changed significantly

OBSTACLE An accumulated map cell contains a moving object

a mov-
marked
r re-
re are

hown
ctively
face, it

l it was
if there

s used
n dig
nd ver-

e safety
d tests, a
h from
eter-
vide a
In addition to detecting when a moving object approaches the machine, it is also important to detect when
ing object has moved away. This is accomplished by monitoring height decreases as well as increases. If a cell
as CHANGED or OBSTACLE decreases significantly in height (in the case of the first MergeCell algorithm), o
turns to a height close to its original height (for the second MergeCell algorithm), it is marked SET. When the
no longer any obstacles in the safety region, vehicle motion can safely resume.

3.3 Experiments

As with the obstacle detection algorithm, we first evaluated the WSM in simulation. The simulation scenario is s
in Figure 9. While the excavator was performing regular truck loading cycles, a human-sized object was intera
moved in the simulator. When the object was moved into the safety region from the area at the base of the dig
was reliably detected. When the object was moved along the side of the dump truck, it was not detected unti
approximately one meter away from the dump truck. This is due to the heuristic which ignores height changes
is a large height discontinuity between neighboring grid cells.

When testing with the real excavator, we used a simplified motion planner instead of the full system (as wa
for testing of the WSM in simulation). The simplified motion planner continuously swung the excavator betwee
and dump locations, commanding scanner motions similar to those used during truck loading. Using the seco
sion of the MergeCell procedure, the WSM was able to reliably stop the excavator when a person entered th
area. We designated a 24m x 24m square centered on the excavator as the safety area. As in the simulate
person moving next to a taller object (such as a dump truck) would not be detected until they moved far enoug
the object (typically 1m) so that they would not be in an adjacent grid cell. While it is certainly possible for a d
mined individual to enter the swing zone of the excavator before the excavator halts, we found the WSM to pro
very useful level of safeguarding for the machine.

procedure checkCell(cell, tempCell):

if (tempCell.height - cell.height > heightThreshold) then
numEmpty = 0;
foreach neighbor n of cell

if (n.status = SET) then
if (n.height > tempCell.height - neighborHeightThreshold) or

(n.height - cell.height > slopeThreshold) then
tempCell.status = CHANGED;
return;

endif
else if (n.status = EMPTY) then

tempCell.status = CHANGED;
numEmpty = numEmpty+1;
if (numEmpty >= 2) then return ;

endif
endfor

cell.status = OBSTACLE;

end

Figure 6: Pseudocode forCheckCell .

ks such as
etection
uld have
and
sed only
ples per

r will be

9.8KHz.
ese re-

pdate
cts the
ill be
anned)
ay not
cavation

an ele-
es place

procedure mergeCell(tempCell, cell):

if (tempCell.status = NOT_VISITED) or
 (tempCell.status = I_NOT_VISITED) then

if ((cell.status = OBSTACLE) or (cell.status = CHANGED)) and
(tempCell.height < cell.height - heightThreshold) then

if (cell.status = OBSTACLE) then notifyPlannerOfChange(cell);
cell.status = SET;

endif
else if (tempCell.status = CHANGED) then

cell.status = CHANGED;
else if (tempCell.status = OBSTACLE) then

cell.status = OBSTACLE;
notifyPlannerOfChange(cell);

endif

cell.height = tempCell.height;

end

Figure 7. MergeCell pseudocode for continuous map updating.
4. DISCUSSION

4.1 Sensor requirements

In our system, obstacle detection imposes the strongest requirements on range sensors. Other perceptual tas
truck recognition and dig planning do not demand the spatial resolution and range accuracy that obstacle d
does. To robustly detect a child-sized obstacle at the maximum reach of the excavator, the range sensors sho
an inter-scanline spacing of roughly 20cmd at 10m, or 1.15 degrees. To enable discrimination between obstacles
noise, 6 data points on an obstacle appear to be sufficient. Assuming a 1 meter high obstacle at 10m that is sen
in a single scanline, this translates to an intra-scanline point spacing of 0.95 degrees. This equates to 376 sam
scanline. To achieve the desired inter-scanline spacing, we must account for the speed at which the scanne
panned. If we can ensure that the scanner will not be panned at more than 30 degrees per secondincludingthe swing
velocity of the excavator, then we can use a scanline rate of 26 scanlines/sec. This yields a point sampling rate
In practice, our scanners have slightly higher point sampling and mirror rotation rates and are able to meet th
quirements.

As noted in the description of the Workspace Monitor, our current sensors do not allow us to continually u
the map due to the limited sampling density at long ranges. We feel that in order to reliably sense moving obje
size of small child at 15 to 20m, a point sampling of approximately 30 KHz and a mirror rotation rate of 50Hz w
necessary (assuming a total pan velocity of 30 deg/s and desired point spacing of 15cm). While point (unsc
rangefinders with 30KHz and higher sample rates and sufficient accuracy are commercially available, they m
have adequate robustness to dust and fog, two conditions which are frequently encountered during mass ex
operations.

4.2 Geometric representations

The geometric representations we use for obstacle detection (points along the bottom of the implements, and
vation map of the environment) are limited, but are appropriate for mass excavation tasks. Mass excavation tak

d. This assumes a narrow rangefinder beam. A greater inter-scanline spacing is tolerable with larger beamwidth.

id-based
er sur-

(such
he low
d render

ight in
com-

ous ob-
sist of
ber of

, since it
cavator
scanned

sible and

en the
ition-

ain map
e world

procedure mergeCell(cell, tempCell):

if (tempCell.status = NOT_VISITED) or
(tempCell.status = I_NOT_VISITED) then
if (tempCell.status = OBSTACLE) or (tempCell.status = CHANGED) then

dHeight = tempCell.height - cell.ObstacleHeight;
if (dHeight < heightThreshold/2) or

((tempCell.status = I_NOT_VISITED) and
 (dHeight < 0))) then
if (cell.status = OBSTACLE) then notifyPlannerOfChange(cell);
cell.status = SET;

endif
else if (cell.status = EMPTY) then

cell.height = tempCell.height;
cell.status = SET;

endif
else if (tempCell.status = CHANGED) or (tempCell.status = OBSTACLE) then

cell.status = tempCell.status;
cell.obstacleHeight = tempCell.height;
if (cell.status = OBSTACLE) then notifyPlannerOfChange(cell);

endif

Figure 8: MergeCell pseudocode for initial map building with continuous comparison.
outdoors and away from overhead structures. Since obstacles are part of or are resting on the ground, the gr
elevation map is equivalent a set of bounding boxes around objects in the environment. Checking only the low
face of the implements for collisions is also reasonable since the excavator will not passunderany objects in the en-
vironment. Other tasks may involve overhead obstacles; if this is the case, then a different intersection algorithm
as determining whether any range points lie within a polyhedral model of the excavator) may be used. Given t
computational cost of our current system, we do not expect that a more complex geometric representation woul
our general approach infeasible.

It may also be desirable to use a more complex representation for the WSM. Instead of storing a single he
a grid cell, a histogram of observed heights could be maintained. The points in a temporary grid cell could be
pared to the histogram in the corresponding cell of the accumulated map, and significant departures from previ
servations could be used to detect motion. This method may require an initialization phase, which could con
taking a slow, dense scan (as we do now), or not detecting moving objects in a cell until a predetermined num
data points have been observed in the cell. In general, we have tried to avoid statistically-based approaches
is highly desirable to detect obstacles and moving objects with only 4 or 5 data points from the object. The ex
moves quickly enough and presents significant enough hazards that is unacceptable to require that an object be
several times in order to have sufficient evidence of its presences. The histogram-based approach may be fea
yet sill allow some resistance to sampling errors, but requires further investigation.

4.3 Motion Estimation

One limitation of our current system is that it does not account for movement of the excavator’s base. Wh
excavator drives a few feet to a new digging location, a new map must be built for workspace monitoring. Add
ally, slippage of the tracks may occur during sudden starts and stops of swing motion. Inertial sensors and terr
registration may be useful in both of these cases to ensure that range data is consistently converted to the sam
coordinate system.

n system
xcava-
uarding
main-
avator,
fore peo-

ear in
da.
al of

ngs of
6, pp.

ion”,
France,

Safe-
inne-

Re-

Figure 9: Simulation scenario used for testing the Workspace Monitor. The person-sized obstacle is the light object
in the foreground.
5. CONCLUSION

We have presented a two-layer safety system for an autonomous excavator. A close-range obstacle detectio
halts motion if collision with an obstacle is predicted, while a longer-range motion detection system gives the e
tor time to halt before human workers or unanticipated vehicles enter the machine’s workspace. This safeg
system is an improvement over other similar systems in that it allows full-speed operation of the excavator while
taining a high standard of accident prevention. While the obstacle detection approach is fairly specific to an exc
the workspace monitor has broader application to large autonomous machines which must cease operation be
ple or vehicles approach.

6. REFERENCES

1. A. Stentz, J. Bares, S. Singh, and P. Rowe, “A Robotic Excavator for Autonomous Truck Loading”, to app
the 1998 Proceedings of the International Conference on Intelligent Robots and Systems, Victoria, Cana

2. O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”, The International Journ
Robotics Research, Spring 1986, Volume 5, Number 1, pp. 90-98.

3. M. Greenspan and N. Burtnyk, “Obstacle Count Independent Real-Time Collision Avoidance”, Proceedi
the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April 199
1073-1080.

4. M. Greenspan, J. Ballantyne, and M. Lipsett, “Sticky and Slippery Collision Avoidance for Tele-Excavat
Proceedings of the 1997 IEEE/RSJ International Conference in Intelligent Robots and Systems, Grenoble,
September 1997, pp. 1666-1671.

5. D. Seward, F. Margrave, I. Sommerville, and R. Morrey, “LUCIE the Robot Excavator - Design for System
ty”, Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, M
sota, April 1996, pp. 963-968.

6. L. Matthies, A. Kelly, T. Litwin, G. Tharp, “Obstacle Detection for Unmanned Ground Vehicles: A Progress
port”, 7th International Symposium on Robotics Research, October 21-24, 1995, Munich, Germany.

	Obstacle detection and safeguarding for a high-speed autonomous hydraulic excavator
	Chris Leger, Patrick Rowe, John Bares ,
	Scott Boehmke, and Anthony Stentz
	The Robotics Institute, Carnegie Mellon University
	ABSTRACT
	1. Introduction
	2. obstacle detection
	2.1 Constructing elevation maps
	2.2 State prediction
	2.3 Detecting intersections
	2.4 Scanner lookahead
	2.5 Validation

	3. safeguarding
	3.1 Building elevation maps
	3.2 Updating the accumulated elevation map
	3.3 Experiments

	4. discussion
	4.1 Sensor requirements
	4.2 Geometric representations
	4.3 Motion Estimation

	5. Conclusion
	6. references

